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Abstract 

The Remote Agent Experiment  (RAX) on the Deep 
Space 1 (DS1) mission was the first time that an arti- 
ficially  intelligent  agent  controlled a NASA spacecraft. 
One of the key components of the remote  agent  is  an 
on-board  planner.  Since  there was no opportunity for 
human  intervention  between  plan  generation  and  ex- 
ecution,  extensive  testing was required to ensure that 
the planner would not endanger the spacecraft by pro- 
ducing  an  incorrect plan, or by not producing a plan 
at all. 
The testing process raised  many  challenging  issues,  sev- 
eral of which remain  open. The planner and domain 
model are complex, with billions of possible inputs and 
outputs. How does one obtain adequate  coverage  with 
a reasonable  number of test cases? How does  one even 
measure  coverage  for a planner? How does  one  deter- 
mine  plan  correctness?  Other  issues  arise from  devel- 
oping a planner  in the context of a larger  operations- 
oriented  project,  such as limited  workforce and chang- 
ing  domain  models,  interfaces  and  requirements. As 
planning  systems are fielded  in  mission-critical  appli- 
cations, it becomes  increasingly important to  address 
these  issues. 
This  paper  describes the major  issues that we encoun- 
tered while testing the Remote Agent planner, how we 
addressed them, and  what  issues  remain open. 

Introduction 
As planning  systems  are fielded in operational environ- 
ments, especially mission-critical ones  such as space- 
craft  commanding,  validation of those systems becomes 
increasingly important. Verification and validation of 
mission-critical systems is an  area of much research and 
practice,  but  little of that is applicable to planning sys- 
tems. 

Our experience in validating the Remote Agent plan- 
ner for operations  on  board  DS1 raised a number of key 
issues, some of which we have  addressed and many of 
which remain open.  The  purpose of this  paper is to 
share  those experiences and  methods with the planning 
community at large,  and  to highlight important  areas 
for future research. 
Copyright @ 2000, American  Association for Artificial  In- 
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At the highest level there  are  two ways that a planner 
can fail. It can fail to generate a plan  within  stated  time 
bounds1 (converge), or  it  can  generate  an incorrect plan. 

Plans  are correct if they  command  the  spacecraft in a 
manner that is consistent with  accepted requirements. 
If the domain  model  entails the  requirements,  and  the 
planner enforces the  model,  then  the plans will be cor- 
rect.  One  must also  validate the  requirements  them- 
selves to be  sure  they  are complete and  correct. 

Ideally we would prove that  the domain  model en- 
tails  the requirements: that is,  prove that  the model 
will always (never) generate  plans  in which particular 
conditions hold. This  may  be possible for  some  require- 
ments,  but is almost  certainly  undecidable in general. 

A more practicable  approach,  and  the one we used for 
RAX, is empirical testing. We first  had  spacecraft engi- 
neers review the English requirements for completeness 
and accuracy. We then  generated several plans from 
the model and developed an  automated  test oracle to 
determine whether they satisfied the  requirements  as 
expressed in first  order  predicate logic. A second (triv- 
ial) oracle checked  for convergence. If all of the  test 
cases converge, and  the  test cases are a representative 
sample of the possible output  plans  (i.e., have  good cov- 
erage),  then we have  high confidence that  the  planner 
will generate correct plans for all  inputs. 

The key issue in empirical testing is obtaining ade- 
quate coverage (confidence) within the available testing 
resources. This requires a combination of strong  test se- 
lection methods that maximize the coverage for a given 
number of cases, and  strong  automation  methods  that 
reduce the per-test cost. Complex systems such as plan- 
ners require huge numbers of test cases with corresond- 
ingly high testing  costs, so this issue is particularly  crit- 
ical for planners. 

We developed a number of test  automation  tools,  but 
it  still required six work-weeks to  run  and analyze 300 
cases. This high per-test cost was largely due  to  human 
bottlenecks in analyzing results  and modifying the  test 

'Since the search  space  is  exponential there will  always 
be inputs for  which a plan  exists but cannot  be  found  within 
the time  limit.  Testing  needs to show that  the planner will 
converge for all of the most likely inputs and a high  propor- 
tion of the remaining  ones. 
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cases and  automations in response to domain model 
changes.  This paper identifies the bottlenecks and sug- 
gests  some ways of eliminating them. 

With only 300 cases it was impossible to  test  the 
planner  as broadly as we would have liked. To keep 
the  test  suite  manageable we used a “baseline  testing” 
approach that focused the  test effort on the  input cases 
most likely to be used in  operation.  This  strategy yields 
high confidence in inputs  around  the baseline but very 
low confidence in the rest of the  input  space.  This risk 
is appropriate when there is a baseline input  scenario 
that changes slowly and becomes fixed in advance of op- 
erations,  as is common in space missions. Late changes 
to  the baseline could uncover bugs not exercised by the 
prior  baseline at  a stage where there is insufficient time 
to fix them. 

This risk could be reduced  with  formal coverage met- 
rics. Such  metrics  can identify coverage gaps. Even if 
there  are insufficient test resources to plug those  gaps 
the  tester  can at least  address the most  critical  gaps 
with a few  key tests,  or inform the project  manager  as 
to  which inputs  to avoid. Coverage metrics  also  enable 
the tester to maximize the coverage of a fixed number 
of tests. 

To our knowledge no such  metrics  exist for planning 
systems  and we did  not have time to develop one of our 
own for testing  RAX.  Instead we selected cases accord- 
ing to  an informal coverage metric. Since test adequacy 
could only be assessed subjectively we used more cases 
than were probably necessary in  order to reduce the risk 
of coverage gaps.  Formal coverage metrics for planning 
systems  are sorely needed to provide  objective risk as- 
sessments and  to maximize coverage. 

The  rest of this  paper is organized  as follows. We 
first  describe the RAX  planner and domain model. We 
then discuss the  test case selection strategy,  the effec- 
tiveness of that  strategy,  and  the  opportunities for fu- 
ture research into coverage metrics and  test selection 
strategies. We then discuss the  test  automations we 
employed, the demands for human involvement that 
limited  their effectiveness, and suggest automations  and 
process improvements that could mitigate  these  factors. 
We conclude  with an evaluation of the overall effective- 
ness of the Remote Agent planner  testing,  and  summa- 
rize the most important open issues for planner  testing 
in  general. 

RAX Planner 
The Remote Agent planner  (Muscettola et al. 1997) is 
one of four  components of the Remote Agent (Nayak et 
al. 1999; Bernard et  al. 1998).  The  other components 
are  the Executive (EXEC) (Pel1 et al. 1997), Mission 
Manager (MM),  and Mode Identification and Reconfig- 
uration  (MIR) (Williams & Nayak 1996). 

When the Remote Agent is given a “start” command 
the  EXEC  puts  the  spacecraft  in a special idle state, in 
which it  can  remain indefinitely without  harming the 
spacecraft,  and  requests a plan.  The request  consists of 
the desired  plan start time  and  the  current  state of the 
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spacecraft. The desired start  time is the current  time 
plus the amount of time  allocated for generating a plan 
(as  determined by a parameter,  and typically between 
one and four hours). 

The Mission Manager extracts goals from the mission 
profile, which contains  all the goals for the experiment 
and  spans several plan  horizons.  A  special waypoint 
goal marks the end of each horizon. The MM extracts 
goals between the required start  time  and  the  next way- 
point  token  in the profile. These  are combined with the 
initial  state.  The MM invokes the planner  with  this 
combined initial state  and  the  absolute horizon start 
time, which is the requested  plan start time. 

The planner  expands the initial state  into a conflict- 
free plan using a  heuristic chronological backtracking 
search.  During the search the planner  obtains  addi- 
tional inputs from two  on-board  software  modules, the 
navigator (NAV) and  the  attitude control  subsystem 
(ACS).  These  are  also referred to  as “plan  experts.” 
When the planner decides to decompose  certain nav- 
igation goal into  subgoals, it invokes a NAV function 
that  returns  the subgoals as a function of the goal pa- 
rameters.  The planner  queries ACS for the  duration 
and legality of turn activities as a function of the  turn 
start time  and end-points. 

The  fundamental  execution  units  in the plan  are to- 
kens (activities). Tokens also track spacecraft states 
and resources. Tokens exist on parallel  timelines, which 
allows activities to  be executed  in  parallel. The plan 
specifies start  and  end  time windows for each  token, 
and  temporal  constraints  among  the tokens  (before, af- 
ter,  contains,  etc). 

Nominal Execution. If the planner  generates a plan 
the  EXEC executes it. Under  nominal  conditions the 
plan is executed successfully and  the  EXEC  requests a 
new plan.  This  plan starts at the end of the current 
plan, which also happens to  be  the  start of the next 
waypoint in the profile. 

Off-nominal Execution. If a fault  occurs  during ex- 
ecution,  and  the  EXEC  cannot recover from it,  it termi- 
nates the plan  and achieves an idle state.  This removes 
the immediate  threat of the fault.  Depending on  the 
failure,  it may only be  able to achieve a degraded idle 



This selection approach  required only a hundred or 
so cases to cover the on-board  inputs  that could occur 
during the experiment for any fixed set of ground in- 
puts,  but required an unmanageable  tens of thousands 
of cases to  cover the full space of ground  inputs.  In- 
stead, we traded risk for coverage by testing  just  the 
ground  inputs we thought  most likely to  be used for 
the experiment,  and performing  a  last-minute success- 
oriented test on  those  inputs when they became avail- 
able. 

On-board Input Selection 

The  on-board  inputs  are  the  plan  start  time,  initial 
state,  and pseudo-random  seed. Values of these  inputs 
are  partitioned  into  two  test  suites, a “replan”  suite 
and a “back-to-back”  suite. If real  faults occur during 
the experiment, a replan could occur at any  time.  The 
initial state could be a nominal  or  degraded idle state. 
The  replan  suite exercises these cases. 

In  nominal  conditions, the plan start times are  at 
the horizon boundaries  and  the  initial  state is the final 
state of the previous  plan. This is called “back-to-back” 
planning. For each  back-to-back  plan in the profile, the 
back-to-back suite exercises the possible final states of 
the previous  plan and it’s fixed plan start time  (the 
horizon boundary).  The  inputs for these two suites are 
selected as follows. 
Initial States. There  are four idle states (all combi- 
nations of MICAS healthy  or  not,  and MICAS on or 
off). The replan  suite exercises all of them.  The final 
states of a  plan  are  the  initial  state for the following 
back-to-back  plan. The experiment  has only one such 
plan and  it’s prior  plan  has 14 final states.  The back- 
to-back suite exercises all of these. 
Replan start time. A  replan  can occur at any one- 
second tick between zero and  the  end of the experiment. 
The  start time  impacts  the  plan in three ways: it de- 
termines which goals the MM extracts for the planner, 
the proximity of those goals to  the  start horizon, and 
the length of the planning  horizon. The first  impact is 
exercised by selecting start times at the  start of each 
goal token.  This will exercise all ways of selecting goals 
from the profile. 

The second impact  primarily affect goals that require 
some  amount of time before or after  the goal for related 
activities. For example, the NAVIGATE token decom- 
poses into  SEP-THRUSTING activities which must be 
preceded by a  one-hour  warm-up  activity. Plan  start 
times  should  therefore  be chosen at  the boundaries of 
these  durations. 

The  third  impact primarily affects the SEP-related 
tokens. The planner  first places the op-nav windows 
and a few other  required  activities. SEP is then sched- 
uled in the remaining  gaps. As the horizon shrinks,  it 
becomes more difficult to schedule SEP activities.  Iden- 
tifying  these horizon lengths would require a detailed 
analysis of the domain  model, profile, and NAV goals 

that would have to  be  repeated whenever the model 
changed.  Instead, we observed that  the times  selected 
for the  other two impacts  produced  several different 
horizon lengths and accepted  those as  adequate. 
Random Seeds. The random seeds tested were the 
default  seed, plus two  additional  seeds. The default 
seed is always used on the first attempt, which should 
succeed if the planner is adequately  tested.  Other seeds 
are used only when the first attempt fails, and  the 
EXEC makes at  most five attempts.  Three seeds there- 
fore seemed reasonable. 

Multiple Variation  Test Cases 
After selecting input  parameter values, the next  prob- 
lem  was selecting a  manageable  number of cases from 
the space of all combinations of those  input values. We 
used orthogonal  arrays (Cohen et  al. 1996) to generate 
a minimal-sized test-suite in which every  pair of input 
values appears in at least  one test case, and every input 
value appears in about  the same  number of cases. 

This  approach  detects every bug  caused by a single 
input value or by an  interaction of two input values. 
It will detect only some bugs caused by interactions of 
three or more input values. The risk of this  approach 
is that  it assumes that  the majority of bugs are  due  to 
one or two input values. 

The final test  suite  had 300 test cases. To exhaus- 
tively test all input combinations would have required 
over one billion cases. This  reduction is possible be- 
cause each case tests several  pairs, and because it  omits 
many higher-order combinations. 

This  set was augmented throughout  the  testing pro- 
cess with  higher-order  combinations that we felt were 
important  to  test. New cases were typically  added to 
focus on faulty  behaviors discovered, or  hinted at, by 
the  standard  test cases. 

Single  Variation  Test Cases. 
Each  multi-variation case changes several  parameter 
values at once. When the planner failed to  generate 
a plan,  it was difficult to  determine which parameters 
were responsible for the failure. 

To address  this  problem, we constructed  a second 
suite of test-cases  in which each case changes only one 
parameter value from a baseline case that is known to 
generate a plan.  The changed parameter value was 
therefore the most likely cause of the failure. 

The number of single-variation test cases was equal 
to  the sum of the  parameter values,  or 120 cases. In 
practice,  these  ”single  variation” cases caught  most 
of the  initial bugs.  These cases also  helped  diagnose 
many of the failed multi-variation test cases, which 
often failed for the same  reason as one of the single- 
variation cases. The remaining bugs were identified by 
the multi-variation cases but  not by any of the single- 
variation cases. The high bug  detection  rate  with a few 
test cases suggest that single-variation  testing  might  be 



tokens 
waypoint 

parameters 

frequency (int),  duration  (int). navigate 
HZN-END, EXPT-START, EXPT-END 

Comm  none 
power-estimate amount (0-2500) 
execactivity type, file, int,  int, boo1 
sepsegment vector  (int), level (0-15) 
max-thrust duration (0-inf) 
image-goal target  (int), exposures (O-20), 

slack (int) 

exp. duration (0-15) 

Table 1: Goal Tokens 

state (e.g., the camera is declared  broken). It then re- 
quests a new plan that achieves the remaining goals 
from the achieved idle state. As with other requests, 
the required start  time is the current  time  plus the time 
allowed for planning. 

Planner Inputs. The planner and mission manager 
can  be  treated  as a unit for testing  purposes. The  inputs 
are  the mission profile, initial state, plan start time, 
random  seed,  and  plan  expert  outputs.  The  start  time 
determines which goals the MM extracts from the pro- 
file. The  other  inputs  are  independent. 

RAX DS1 Domain Model. 
The  domain model  encodes the knowledge for com- 
manding a subset of the DS1 mission known as  ”active 
cruise” that consists  primarily of firing the ion propul- 
sion (IPS) engine  along a NAV-specified thrust  arc;  tak- 
ing  optical  navigation  (op-nav) images of asteroids  with 
the MICAS camera  from which NAV determines the 
spacecraft  position; and slewing (turning)  the space- 
craft  among  image  targets  and  thrust vectors. 

Table 1 lists the goal tokens. The  sepsegment  and 
max-thrust-time  tokens specify the  thrust  arc.  The seg- 
ments specify the direction and level of any  thrust con- 
tained by that token  and  max-thrust-time specifies the 
desired thrust  time.  The  navigate token  determines the 
duration  and periodicity (IfI a “slack” value) of the op- 
nav windows, and  the  takeimage-goal tokens specify 
the image targets.  The  comm(unication) tokens spec- 
ify periods when the spacecraft  must have the low-gain 
antenna  Earth-pointed.  The exec-activity goals specify 
simulated  faults  that  EXEC should  inject  into RAX. 
These were added to  demonstrate RAX’s fault recovery 
capabilities since real faults were unlikely to occur dur- 
ing the experiment.  The power-estimate is the power 
level to  use for planning,  and waypoints  delineate hori- 
zon boundaries. 

Table 2 shows the initial  states. NO-ACTIVITY 
token specifies the  last exec-activity  token  executed 
to  avoid planning an executed goal during a re- 
plan. The  attitude token specifies the initial  attitude. 
The MICAS-HEALTH token specifies whether the MI- 
CAS power switch is broken  or  healthy, and  the MI- 

tokens parameters 
NOACTIVITY 

IDLE-SEGMENT 
TIMER-IDLE none 
SEP-STANDBY none 
CONSTANT-POINTING I target E { Earth, 

image, thrust vector } 3 
MICAS-IDLE 

1 none PLANNER-IDLE 
1 none NAV-IDLE 
1 none INACTIVE 
2 healthy E true, false MICAS-HEALTH 

none MICAS-OFF 
2 none MICAS-READY or 
1 none 

Combinations 36 

Table 2: Initial State Tokens 

CAS-MODE  token  determines  whether it is on  or off. 
If MICAS is stuck the plan  cannot  change the switch 
state. If it is stuck-off the plan  cannot  take images. The 
other  initial state tokens are fixed. 

Test  Selection Strategy 
The key test selection issue is achieving adequate cov- 
erage  with  a  manageable  number of cases.  Test selec- 
tion  should ideally be guided by a coverage metric in 
order to  ensure test adequacy.  Coverage  metrics gen- 
erally  identify equivalence classes of inputs  that result 
in  qualitatively  similar  behavior  with  respect to  the re- 
quirement  being verified. A set of tests  has full coverage 
with  respect to  the metric if it exercises the  test  artifact 
on  one input from each class. 

The verification and validation literature is full of 
coverage metrics for mission-critical  systems  (e.g.,  code 
coverage), but  to our knowledge there  are  no coverage 
metrics specifically suited to planning  systems.  The 
most  relevant  metrics are  those for verifying expert 
system  rule bases. The  idea is to  backward  chain 
through the rule  base to  identify inputs  that would re- 
sult  in  qualitatively different diagnoses  (e.g., (O’Keefe 
& O’Leary 1993)). Planners have  more  complex  search 
engines with  correspondingly  complex  mappings, and a 
much richer input/output space. It is unclear how to in- 
vert that mapping  in  a way that produces  a  reasonable 
number of cases. 

For the RAX  planner we used a very straightforward, 
informal version of this  strategy. For each input  param- 
eter we selected values at extrema  (e.g., low, middle, 
high) or values that we thought would produce  qualita- 
tively different plans  or paths  through  the search  space. 
Although  only a few values of each parameter  are se- 
lected, it was still  impractical to  test all  combinations of 
those values (there  are millions).  Two methods  termed 
multi-variation and single-variation selected a subset of 
these  combinations for testing. 



a good  approach for applications  with a high risk toler- 
ance  and limited  testing resources. 

Ground  Input Selection 
The ground  inputs consist of the mission profile, plan- 
ner parameters (such as the planning duration),  and 
parameter  settings for ACS and NAV. The most  impor- 
tant of these  inputs is the one used for the experiment 
itself. Planner  testing  had  to  ensure  that  the planner 
would meet its requirements for all on-board  inputs  it 
could receive with  this single ground  input  in effect. 

Without a  formal  metric to  show how the profiles and 
other  ground  inputs would impact the  output  plans,  it 
would have required  thousands of cases to feel confident 
in the coverage. Since this was unmanageable, we fo- 
cused on the ground  inputs most likely to  be used in 
flight. The  test cases  consisted of the current  set of 
expected  inputs  (the baseline) and  the most likely fu- 
ture changes. As the experiment  approached, the base- 
line become better defined and  the  test cases were up- 
dated accordingly. The  inputs were finalized one month 
before the experiment at which point we tested  them 
against  all possible replan  times. Since there would be 
little  time  to fix any  bugs  detected at  this point the 
prior testing  had  to provide high confidence that these 
last-minute  tests would pass. We termed  this  approach 
“baseline  testing.” 

The baseline inputs were as follows. The chosen ACS 
slew durations, NAV image parameters,  and  SEP  thrust 
levels were low, medium,  and high values within the 
range of expected values. The remaining  plan  expert 
input,  the NAV thrust  arc, is specified as a series of 
sepsegment tokens. We exercised zero to three seg- 
ments  with  several  relative  placements,  and  appealed 
to induction to cover four or more  segments. We also 
changed the goals in the profile. We changed the dura- 
tion  and placement of the op-nav windows, the power 
level, and  the absolute  experiment start time.  The exec 
activities were not varied since they were under  our con- 
trol. We intended to  test comm goal variations, but 
dropped  this  after  early indications that we would have 
full antenna coverage during the experiment  and could 
therefore  eliminate the goals or  set  them as we wished 
(we did the  later). 
Risks of Baseline  Testing. Baseline testing  as- 
sumes that  the final baseline will be very close to  the 
last  tested baseline, and  that any  last-minute changes 
will have  been covered by the most  recently  tested vari- 
ations.  This  approach is vulnerable to radical changes 
made close to execution.  Radically different inputs will 
not have been adequately  tested,  and  there will be less 
time to  address  any  bugs that occur at this  stage. If 
changes  occur very close to  execution,  and  the new base- 
line uncovers new bugs,  there will not  be  time  to fix 
them.  The execution would have to  be delayed, or it 
would have to proceed  with the bugs present.  Project 
mangers  must  be  made  aware of these  risks and  be pre- 
pared to address  these contingencies if they occur. 
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Table 3: Profile Evolution 

The RAX baseline was relatively stable for over a 
year.  Table 3 summarizes the evolution of the RAX 
baseline profile. Over this period the only change to 
the goal tokens were an addition of four  comm goals 
(and four “no-comm” goals  between them)  in version 
026; an additional  waypoint  token  parameter  and  three 
navigate  token  parameters in 026; and  an  additional 
exec-activity parameter in 029. The relative  placement 
of the goals remained stable,  although  the  absolute 
placement  changed  frequently. 

Beginning in  January of 1999  RAX  experienced two 
late baseline changes. The first  change  occurred  in Jan- 
uary when we integrated the planner  with the real  plan 
experts, which had  just become available.  Until then we 
had been testing  with  simulated  experts.  The real ex- 
perts  turned  out  to have different ranges than  the sim- 
ulators. For example we assumed turn  durations were 
at most 20 minutes,  but in fact  some turns could take 
over an hour. The requirements were either  incorrectly 
captured  to begin with, or had  changed  unbeknownst to 
the RAX team. Since the  experts were available  later 
than originally expected,  there was now no time  in  the 
schedule to rerun the full test  suite  with  the new base- 
line. We had to  be  content with a handful of tests  that 
exercised the new ranges. 

The second change  occurred  in  March,  two  months 
before the experiment. For operational  reasons  RAX 
was no longer allowed to  turn off the MICAS camera 
and  had  to reduce IPS  thrusting from five days to  un- 
der twelve hours. The baseline profile changed from 
six days to two,  deleted an exec activity goal and four 
comm goals,  changed  several  navigate goal parameters, 
and changed the absolute  placement of the goals. The 
goal definitions,  relative  placement, and overall struc- 
ture remained the same. Less radical  changes  occurred 
over the next  month  as  the baseline  stabilized  (navigate 
token parameters  and  temporal  relations).  The original 
baseline tests  apparently covered this space well enough 
that only two minor  bugs were detected  in the final test- 
ing of the new baseline. This is probably  because the 
basic structure of the two  baselines were similar, even 
though  several major changes were made. 



Test Effectiveness 
This selected tests were ultimately successful in  validat- 
ing the planner  in that  they provided sufficient confi- 
dence for the  DSl project to approve the Remote Agent 
Experiment for execution  on DS1, and  the  on-board 
planner  exhibited  no  faults  during the experiment. A 
total of 211 bugs were reported. 

Since there were no  formal coverage metrics,  it was 
difficult to assess test adequacy. Some 22 problems, or 
a  little over 9% of the  total problem reports, were dis- 
covered during  integration  and development but would 
not have been  caught by the official test  suite. These 
problems  provide useful insight into  the coverage gaps. 

1.  Planning problems  became  more challenging when we 
transitioned  from the 6 day  scenario to  the 2 day 
scenario. The temporal compression led to  the dis- 
appearance of slack time between activities.  In the 6 
day  scenario PS could exploit this slack to achieve 
subgoals  without  backtracking. In the 2 day sce- 
nario  backtracking  became necessary, revealing addi- 
tional  brittleness  in the  PS chronological backtrack- 
ing  search. 

2. In at least  one case the  test selection missed key 
boundary values that would have been apparent  with 
a  more  detailed model analysis. This problem de- 
pended  upon the specific values of three continuous 
parameters: the time to  start  up  the  IPS engine, the 
time  to  the next  optical  navigation window, and  the 
duration of the  turn from the  IPS  attitude  to  the first 
asteroid. An equation  relating  these  parameters  can 
crisply identify the boundary values that should be 
exercised. 

These coverage gaps could have been detected if bet- 
ter coverage metrics  had been available to guide test 
selection. The  test selection was based  on an informal, 
high level analysis of the model, and doubtless missed 
many  such subtle  interactions. 

Formal Coverage Metrics  Needed 
Formal coverage metrics  are sorely needed for planner 
validation. We required  thousands of cases to cover the 
ground  inputs, especially the goals,  because there was 
no  formal  analysis to  indicate which input combinations 
needed to  be  tested  and which could be ignored.  A 
good metric would have allowed us to  eliminate unnec- 
essary  combinations confidently and determine where 
additional cases were needed. 

Formal  metrics  provide  can identify coverage gaps 
and  can inform  cost-risk  assessments. If one knows 
how many cases are needed for a given level of cov- 
erage (risk), one  can  make an informed decision on how 
to balance the number of cases (cost)  against coverage 
(risk). 

Formal coverage metrics,  such  as  code coverage, have 
been developed for critical  systems  but to our knowl- 
edge no  metrics have been developed for measuring cov- 
erage of a  planner  domain model. This is clearly an  area 

for future research.  A few possibilities are discussed be- 
low. 

Constraint coverage. One possible coverage metric 
is the number of compatibilities covered. This is anal- 
ogous to a code coverage metric. For a given plan,  it 
determines which compatibilities  (constraints) it uses, 
and how those  compatibilities were instantiated. A 
good test  suite should exercise each  instantiation of 
each compatibility at least once. 

Goal-Interaction coverage. This coverage metric is 
targeted at exercising combinations of strongly  interact- 
ing goals. Since testing  all  combinations is intractable, 
the idea is to analyze the domain model to  determine 
how the goals interact,  and only test goal  combinations 
that yield qualitatively different conflicts. For example, 
if goals A and B used power, we would test cases where 
power  is oversubscribed by several A goals, by several 
B goals, and by a combination of both goals.. The cov- 
erage could be  adjusted to balance  risk  against  number 
of cases. One could limit the coverage to interactions 
above a given strength  threshold. 

This  metric would extend  on prior work on de- 
tecting goal interactions  in  planners to  improve up 
the planning  search,  such as STATIC  (Etzioni 1993), 
Alpine (Knoblock 1994) and Universal Plans (Schop- 
pers  1987).  STATIC  generates a problem solving graph 
from the constraints  and identifies search  control  rules 
for avoiding goal interactions.  Alpine identifies interac- 
tions to find non-interacting  sub-problems, and univer- 
sal  plans  (Schoppers 87) derive  reactive  control rules 
from pair-wise goal interactions.  These  methods  are 
designed for STRIPS-like  planning  systems and would 
have to be  extended to deal  with  metric  time and aggre- 
gate resources, both of which are crucial for spacecraft 
applications.  One of the  authors  (Smith) is currently 
pursuing  research  in this  area. 

Slack metric. Another  approach  being  pursued by 
one of us (Muscettola) is to  select plan start times by 
analyzing the slack in the baseline plans.  This  approach 
was used to  manually select plan start times  once the 
final baseline was frozen just  prior  to  the  experiment. 

Using our knowledge of the  PS model, we manually 
identified boundary  times at which the topology of the 
plans would change. We identified 25 such  boundary 
times and  generated a total of 88 test cases correspond- 
ing to plans starting at, near,  or between boundary 
times.  This led to  the discovery of two new bugs. Fur- 
thermore,  analysis of the  test  results showed that  PS 
would fail to find a plan at only about 0.5% of all possi- 
ble start times.  Although the probability of this failure 
was extremely low, contingency  procedures were devel- 
oped to ensure that  the experiment could be success- 
fully continued even if this  PS failure  actually  occurred. 

Test Automation 
Automation played a key role in  testing  the  Remote 
Agent planner. It was used for  generating  tests,  run- 



ning tests,  and checking test  results for convergence and 
plan  correctness.  Even so, the demand for human in- 
volvement was high enough to  limit the number of test 
cases to  three hundred  per  six week test  period, or an 
average of ten cases per work-day. 

There were two  main  bottlenecks where human in- 
volvement was required:  analysis, and changes to  the 
test  suite  and  automation  infrastructure caused by 
changes to  the model and baseline. This  section dis- 
cusses the  automations  that we found effective, the hu- 
man  bottlenecks,  and  opportunities for further  automa- 
tion. 

Testing Tasks 
The Remote Agent software,  including the planner, was 
released for testing every  six to eight weeks. The plan- 
ner was exercised on  the full set of test cases. A  typical 
test cycle consisted of the following activities. 

The  tester  updates  the  set of test cases as  required 
by any  changes to  the baseline, goal tokens, or initial 
state tokens.  A test  harness invokes the planner  on each 
test case and collects the  output. If the  test cases ex- 
ercise new input  parameters,  or planner  interfaces have 
changed, the harness  must  be  upgraded  and debugged 
first. The  tester makes sure  that  the plans ran properly, 
and re-runs  any that failed for irrelevant  reasons  (e.g., 
the ACS simulator  did  not start). 

The  test  results  are analyzed by two oracles. The 
first checks for convergence, and  the second for plan 
correctness. The oracles  say that a  requirement  failed, 
but  not why it failed. The tester reviews the  output  to 
determine the proximate  cause  and files a bug report. 

Finally, the analyst confirms purported bug fixes 
from the previous release as  reported  in  the bug- 
tracking  database.  Each  bug  has one  or  more  support- 
ing cases. The  analyst determines  whether  those cases 
passed,  or  whether the bug is still  open.  In some in- 
stances, the  tester may have to devise additional  tests 
to  confirm the  bug fix. 

Test Automation Tools. 
We employed several test  automation  tools for validat- 
ing the Remote  Agent  planner, which are summarized 
below. 
0 Test case generator. This  tool  generated a man- 

ageable  number of test cases from the cross product 
of all  selected parameter values. It first selected the 
input  parameters  that would comprise each test case, 
according to  the single-variation and multi-variation 
(orthogonal  arrays)  methods described  earlier. It 
then converted the  parameter values to  input files: 
initial  state,  planner  parameters  (random  seed),  and 
a parameter file that governs the ACS and NAV sim- 
ulators.  The mission profiles were too difficult to  gen- 
erate  automatically  and were constructed by hand. 

0 Test Harness. The harness invokes the planner 
with the  inputs for a given test case and collects the 
output, which consists of the plan file  (if any),  time 

Task I Effort 
Update/debu.g cases, tools I 3.0 
Run c&es and analyzers  0.1 
Review analyzer output  1.5 
File bug reports I 0.5 
Close bigs- 

5.6 Tot a1 
0.5 

Table 4: Test Effort in Work Weeks  by Task 

spent  planning, search trace,  the  initial  state gener- 
ated by the mission manager,  and  the  simulator  and 
harness output. 

0 Plan Correctness Oracle. The oracle  reads  a  plan 
into an assertions database  and  then verifies that  the 
assertions  satisfy  requirements  expressed in first  or- 
der  predicate logic (FOPL).  This  tool  (Feather 1998; 
Feather & Smith. 1999) was implemented  in AP5, a 
language that  supports  these kinds of FOPL opera- 
tions. 
The oracle also verified that  the plan  engine enforced 
the  plan model by automatically  converting the plan 
model into equivalent FOPL  statements  and check- 
ing the plan  against  them.  Compatibilities  are of the 
form "if token  A  exists in the  plan,  then  there also 
exists  a  token B such that  the  temporal relation  R 
holds between A and B." This  maps  onto  an equiva- 
lent FOPL requirement: A + B A R(A, B) .  

Human Bottlenecks 
The biggest demand for human involvement was from 
changes to  the model and baseline that required modify- 
ing the  test cases and tools. The next  largest  demand 
was for reviewing the  output from the  automated re- 
quirement checkers as a  prelude to  filing bug  reports. 
The  test effort by task is shown in  Table 4. 

Impact of Model and Baseline Changes. About 
half of the  test effort in each cycle were the result of 
changes to  the model,  baseline, and planner  interfaces. 
These changes required  modifications to  the composi- 
tion of the  test  suite,  and modifications to  the  test  har- 
ness. Table and shows how the model evolved over 
several releases, and Table  3 in the Test  Selection sec- 
tion shows how the baseline evolved. 

When new input  parameters  are  added,  the harness 
must be  updated  to process them  appropriately.  These 
changes are fairly  straightforward,  and  can  typically  be 
completed and debugged in about a day. 

A more  time-consuming  impact comes from  tracking 
changes to planner  interfaces.  Most of the  test  param- 
eters  are converted into  planner  input files which the 
harness feeds to  the planner. The initial state, simula- 
tor  parameters file, and  the  planner  parameters file are 
created  automatically; the mission profiles are  created 
manually. When the  syntax  or  semantics of these files 
changed,  or the  input  parameters  changed,  the  input 



029 
FLT  003 
FLT 005 
FLT  007 

date 

7/09/98 
8/23/98 
9/07/98 

10/02/98 
11105.98 
12/16/98 

4/23/98 

2/07/99 
3/19/99 
4/08/99 

compats 
43 
40 
39 
37 
39 
41 
46 
46 
46 
46 

relations I disjuncts 
121 I 19 
120 
116 
111 
207 
237 
261 
257 
261 
259 

Table 5: Model Evolution 

19 
19 
19 
19 
23 
26 
26 
26 
27 

files had  to  be regenerated. 
Although  updating  the  input file generator  and re- 

generating the files only took a day or so, debugging 
the resulting  test cases often  took  several  days. If a 
test case  failed,  it could have been  because of a real 
bug, or because of an error  in the  input file. Some of 
these were obvious, and  detected  in a dry  run with  a 
few test cases. Others were more subtle  and occurred 
only under  certain  conditions.  These were not  detected 
until the analysis  phase, at which point the cases had 
to be  re-run  and re-analyzed. 

This problem was exacerbated by undocumented in- 
terface  changes.  Many of the planner  interfaces were 
internal  to  the  Remote Agent.  Changes were sometimes 
omitted from the release notes,  and would not become 
apparent  until  the  test cases were analyzed. 

This experience  indicates that  it is preferable to 
maintain  stable interfaces throughout  testing if at all 
possible. If interfaces  must  change,  they should do so 
infrequently and  the decision to change them should 
factor in the  test  impact. 

However, two key interfaces are  particularly  resistant 
to  this policy: the initial state  and  the mission profile. 
These files are comprised of tokens,  and if these  token 
definitions change  in the domain  model,  these input 
files must  also  change.  Table shows how the token 
parameters changed over time. The number of token 
types remained constant. 

We observed that token parameters were most often 
added  in  order to propagate values for use by compati- 
bilities or heuristics and did not record values specified 
externally. We created  the notion of a private  parame- 
ter  to avoid changes. Private  parameters do  not  appear 
in the initial state or profile, but  are  added  automati- 
cally by the MM. Their values are  set  automatically by 
propagation  from  other  parameters.  This  reduced the 
number of impactful  parameter changes from 30 to  10. 

We addressed the initial state problem by negotiating 
an interface to  the initial-state  generating  function in 
the  EXEC code. The  test  harness  constructed  an  initial 
state by sending appropriate  inputs  to  those functions, 
which would then  create  the  initial  state  that was iden- 
tical to  the one used without the harness. 

Token 
navigate 
op  nav window 
no  op  nav 
waypoint 
no  op  nav 
op  nav window 
exec goal 
sep  timer idle 
SEP  standby 
no  activity 
micas health 
MICAS ready 
RCS turn 
sep turn 
exec activity 

Type 
goal 
goal 
goal 
goal 
goal 
goal 
goal 
init 
init 
init 
init 
init 
internal 
internal 
internal 

Public 
+3 

+1 

+5 
+1 

Private 

+8 
+4 
+1 
+1 
+1 

-1 
+l 
+1 
+1 
-1 

+1 

Version 
026 
026 
026 
026 
027 
029 
029 
019 
019 
029 
029 
029 
019 
026 
029 

Table 6: Token Parameter Changes 

With baseline testing  approach, the baseline profile 
and  the most likely variants  are expected to  change over 
time,  and in practice  changed  with  each  test release. 
The baseline profile is known to work,  since that is the 
acceptance  criteria for delivering the software for test- 
ing. The variant profiles are  created by hand from the 
baseline profile. It is difficult to  generate valid pro- 
files (ones  with  satisfiable  goals),  since it requires some 
knowledge of how the goals interact  with  the domain 
model. The debugging effort for the mission profile 
variants could have been  greatly  reduced by automat- 
ically checking the profile validity. One could imagine 
automating  these checks by using an  abstraction of the 
domain model to prove that a set of goals are  unsatis- 
fiable. 

The debugging effort for other  inputs could have been 
reduced in a similar  fashion. The  syntax  and seman- 
tics of each input file could be formally specified and 
automatically verified against that specification.  This 
would have detected  interface  changes (the  input files 
would be invalid) and eliminated  most of the debugging 
effort by detecting  input file inconsistencies  early and 
automatically. 
Changing Requirements. Whenever the require- 
ments  changed, the  automated requirement checkers 
had to  be updated accordingly. The requirements 
documents  often lagged development, so requirement 
changes were sometimes not  detected  until  the  bug re- 
porting  phase.  The  documents  and  automated check- 
ers then  had  to be updated.  In some cases, several 
test cases had to be  re-analyzed  against the changed 
requirement. 

It is almost impossible to get  all the requirements 
right in the first draft of the requirements  document. A 
certain  amount of inefficiency and missed requirements 
should be expected for the first few test cycles as the 
document is refined. It may  be possible to converge 
faster by having the developers to  run  the  automated 



plan checker on the baseline  scenario before releasing 
the software for testing.  This will highlight the obvious 
discrepancies  between the formal  requirements and  the 
developer’s expectations. 

Running Tests Unnecessarily. When the domain 
model changes it may  not  be necessary to  run all the 
tests  again. Some test  results from the previous version 
of the model may  still be valid. We had  no way to iden- 
tify these  “unimpacted”  tests confidently, and therefore 
had to  run all of the  tests  in every test cycle. If a reli- 
able  method were available, it could significantly reduce 
the number of tests  that had to  be  run  in each test cycle 
with  no  increase  in  risk.  One could imagine  analyzing 
the domain model to  determine  whether the  test case 
would exercise the changes. For example,  a  test case in 
which the MICAS camera is stuck off would not exercise 
a change to  the  duration of the MICAS-ON token. 

This  capability would also allow one to  assess the 
cost of testing  proposed model changes.  This is an im- 
portant  factor in deciding how (or even whether) to 
fix a bug  near delivery, and  in assessing which fixes or 
changes to include  in a release. 

Analysis Costs. The oracles identify cases that do 
not meet the requirements,  but do not explain why they 
failed. For each failed test case, the analyst  determines 
the proximate  cause of the failure and groups cases that 
have  similar  causes. This diagnosis provides a strong 
hint for finding the underlying  bug, and is critical for 
tracking  progress. If the analyst simply stated  that  the 
planner failed to  generate a plan  on the following  fifty 
test cases, that could mean there  are fifty underlying 
bugs or  just one. The first  requires  far  more work than 
the second. The initial diagnoses provide  a much better 
estimate of the number of outstanding bugs. 

These  analyses took eight to  ten work-days for a  typ- 
ical test cycle and were largely unautomated. To deter- 
mine why a  plan failed to converge required the tester 
to  examining the plan  search trace  and consider how the 
test case differs from cases that  do  not exhibit the be- 
havior. Plan correctness  failures  require  similar review, 
although  it is somewhat  simpler (2-3 days) since the 
failure is isolated and  the oracle identifies the offending 
plan  elements. 

Automated  diagnosis could reduce  these  efforts, es- 
pecially for determining why the planner failed to gen- 
erate a plan.  There  has been some work in this  area 
that could be  applied  or  extended. Howe (Howe & Co- 
hen 1995) performed statistical analyses of the planner 
trace  to determine which combinations of state  and re- 
pair  operator were abnormally likely to cause  failures. 
Chien  (Chien 1998) allowed the planner to  generate a 
plan, when it was otherwise  unable to, by ignoring  prob- 
lematic  constraints.  Analysts were able to diagnose the 
underlying  problem  more quickly in the context of the 
resulting  plan. 

Conclusions 
The main  requirements for the Remote Agent planner 
were to  generate a plan  within the time  limit,  and  that 

the plan  be  correct. The validation  approach for the 
Remote Agent planner was to  invoke the planner  on 
several test cases, and  automatically check the results 
for convergence and  plan correctness.  Correctness was 
measured  against  a set of requirements developed by 
the planning team  and validated by system  and sub- 
system  engineers. The cases were selected to  exercise 
key boundary  points and  extrema  in  the mission profile 
(goals) and domain  model.  These values were identi- 
fied informally, based on  the  tester’s knowledge of the 
domain  model. 

Our  informal coverage metrics  required  only  a few 
hundred cases to  obtain good coverage of the  inputs 
that would occur  on-board for any given set of goals, 
but required  thousands of cases to  cover the entire 
goal space.  This was unmanageable given the avail- 
able workforce, even with  automated  plan checkers and 
test  runners. 

Analysis costs were high  because of the need to  pro- 
vide initial diagnoses for cases where the planner failed 
to generate a plan,  and  the need to review the plan 
checker’s output.  Changes to  the planner  interfaces, in- 
cluding  changes to  the model,  also created  an overhead 
for updating  and debugging the  test  harness.  Changing 
requirements imposed a similar  overhead on  the  auto- 
mated requirement checkers. We suggested a number 
of ways to mitigate  these  factors. 

Since we could not  manage the number of cases 
needed to adequately cover the  entire goal space, we 
focused our efforts. The planner  only  had to work on 
one  set of goals-those used in flight-but those goals 
would not be finalized until a few weeks before the ex- 
periment. We therefore focused our cases on the current 
baseline goals and few likely variations to  it.  This ex- 
ercised the planner on  inputs close enough to  the final 
baseline that when the final baseline was tested  just be- 
fore the experiment  only a few minor  bugs were found. 

Chasing an evolving baseline  imposed an overhead 
of updating  and debugging the  test  suite  and  test  har- 
ness when the baseline changed. It was also  vulnera- 
ble to  late,  radical changes to  the baseline  despite Re- 
mote Agent’s success with  such  changes. This  approach 
should only be used with full knowledge of the inherent 
risks and  limitations. 

A better  approach would be to  exercise the goal space 
more completely. This would almost  certainly  require 
far  more test cases than we were able to  manage for the 
Remote Agent planner.  There  are a number of open re- 
search  opportunities  in  this  area.  Formal coverage met- 
rics are sorely needed for planners.  Such  metrics could 
guide the  test selection and inform decisions on bal- 
ancing risk (coverage) against  cost  (number of cases). 
Clever metrics may also be  able  to  reduce  the number of 
cases needed for a given level of coverage as  compared to 
the straightforward  metrics used for the Remote Agent 
planner. 

The number of manageable cases could also be in- 
creased by reducing the demand for human involve- 
ment.  Automated diagnosis methods would eliminate 



one bottleneck, especially methods for determining why 
no  plan was generated.  Methods for identifying ille- 
gal inputs, especially illegal goals and  initial  states, 
would eliminate  some of the test-case  debugging effort, 
as would process  improvements for limiting  interface 
changes. 

The  Remote Agent was a real-world, mission-critical 
planning  application.  Our  experience in validating the 
Remote Agent planner  raised a number of key issues. 
We addressed  several of these,  but  many issues remain 
open. As planning  systems  are increasingly fielded in 
critical  applications the importance of resolving these 
issues grows as well. Hopefully the Remote Agent ex- 
perience will spark new research in this  important  area. 

Acknowledgments 
This  paper describes work performed at the  Jet Propul- 
sion  Laboratory,  California  Institute of Technology, un- 
der contract from the National  Aeronautics and Space 
Administration,  and by the NASA Ames Research Cen- 
ter.  This work would not have been possible without 
the efforts of the rest of the Remote Agent Experiment 
team  and  our  assistant  testers Todd  Turco and  Anita 
Govindjee. 

References 
Bernard,  D.;  Dorais,  G.; Fry, C.;  Gamble,  E.; Kanef- 
sky, B.;  Kurien, J.; Millar, W.;  Muscettola,  N.; Nayak, 
P.;  Pell,  B.;  Rajan,  K.;  Rouquette, N.; Smith,  B.;  and 
Williams, B. 1998. Design of the remote  agent  exper- 
iment for spacecraft  autonomy.  In Proceedings of the 
1998 IEEE Aerospace  Conference. 
Chien, S. 1998. Static  and completion  analysis for 
knowledge acquisition,  validation  and  maintenance of 
planning knowledge bases. International Journal of 
Human-Computer Studies 48:499-519. 
Cohen,  D.;  Dalal, S.; Parelius, J.;  and  Patton,  G. 1996. 
The combinatorial design approach to  automatic  test 
generation.  In IEEE Software, 83-88. 
Etzioni, 0. 1993. Acquiring  search  control knowledge 
via  static analysis. Artificial Intelligence 62:255-302. 
Feather,  M., and  Smith.,  B. 1999. Automatic  genera- 
tion of test oracles: From pilot studies to applications. 
In Proceedings of the  Fourteenth International Confer- 
ence  on Automated Software  Engineering (ASE-99), 
63-72. Cocoa  Beach, FL:  IEEE  Computer Society. 
Best Paper. 
Feather, M. 1998. Rapid  application of lightweight 
formal  methods for consistency  analysis. IEEE Trans- 
actions on Software  Engineering 24(11):949-959. 
Howe,  A. E.,  and Cohen, P. R. 1995. Understand- 
ing  planner  behavior. Artificial Intelligence 76(2):125- 
166. 
Knoblock,  C. 1994. Automatically  generating  abstrac- 
tions for planning. Artificial Intelligence 68(2). 

Muscettola, N.; Smith,  B.;  Chien, C.; Fry, C.; Rajan, 
K.;  Mohan, S.; Rabideau,  G.;  and Yan, D. 1997. On- 
board  planning for the new millennium  deep  space one 
spacecraft.  In Proceedings of the  1997 IEEE Aerospace 
Conference, volume 1, 303-318. 
Nayak, P.; Bernard,  D.; Dorais, G.; Gamble,  E.; 
Kanefsky, B.;  Kurien, J.; Millar, W.;  Muscettola, N.; 
Rajan,  K.;  Rouquette, N.; Smith, B.;  Taylor, W.;  and 
Tung, Y. 1999. Validating the  dsl remote  agent. 
In International Symposium on Artificial Intelligence 
Robotics and Automation in Space (ISAIRAS-99). 
O’Keefe, R.,  and O’Leary, D. 1993. Expert system 
verification and validation: a survey and  tutorial. AI 
Review 713-42. 
Pell,  B.; Gat, E.; Keesing, R.; Muscettola, N.; and 
Smith, B. 1997. Robust  periodic  planning and execu- 
tion for autonomous  spacecraft.  In Proceedings of the 
Fifteenth International Joint Conference  on Artificial 
Intelligence (IJCAI-97). 
Schoppers,  M. 1987. Universal plans for reactive 
robots in unpredictable  environments.  In IJCAI 87. 
Williams, B., and Nayak, P. 1996. A  model-based  ap- 
proach to reactive self-configuring systems.  In Proceed- 
ings of the thirteenth national  conference  on  artificial 
intelligence (AAAI-96), 971-978. 


